

HETEROTROPHIC VS MIXED BIOFLOC SYSTEMS: IMPACTS ON USE OF WATER, SUSPENDED SOLIDS PRODUCTION AND ZOOTECHNICAL PERFORMANCE OF

Litopenaeus vannamei

Hellyjúnyor Brandão, Dariano Krummenauer, Íris Xavier, Gabriel Santana, Henrique Santana, and Wilson Wasielesky*

AQUACULTURE

SUPERINTENSIVE INTENSIVE EXTENSIVE

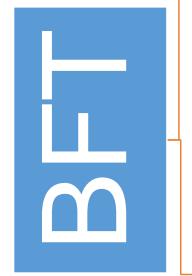
Biosecurity
Stocking Density
Production
Feed consumption

Excretion

NITROGEN COMPOUNDS

(as ammonia, e.g.)

CHEMOAUTOTROPHIC


- Inorganic nitrogen consumption;
- Inorganic carbon consumption;
- Oxidation of ammonia to nitrite and then to nitrate;
- Less biomass (more efficient);
- Slower growth;

HETEROTROPHIC

- Inorganic nitrogen consumption;
- Organic carbon consumption;
- Fast growth
- Increase the amount of total suspended solids (sludge);

Bacteria degrade excess organic matter and allow successive cycles of shrimp production without the need for water renewal culture.

C/N Ratio:15 to 20/1
Daily fertilization according to estimated ammonia production

Mixed chemoautotrophic/heterotrophic

C/N Ratio:15 to 20/1
Fertilization according to ammonia in the system

Objective

To evaluate the effect of bioflocs formation techniques and their effects on the zootechnical performance of *L. vannamei*, on the use of water and production of suspended solids.

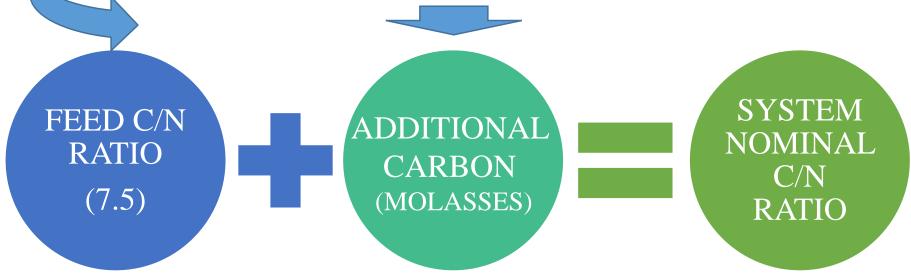
Material and methods

Argentina

ogle

MARINE STATION of AQUACULTURE

Federal University of Rio Grande Southern Brazil


Material and methods

- ✓ 150 L experimental tanks
- ✓ 300 shrimps/m³
- ✓ Initial weight $7.05 \pm 1.37g$
- ✓ 60 days

Percentage of carbon, nitrogen and hydrogen in feed and molasses were determined using a CNHS Elemental Analyser

	С	N	Н	C/N
Feed 38%	43.5	5.82	6.67	7.5
Molasses (powder)	34.69	0.27	5.04	128.48

Treatments

No organic fertilization

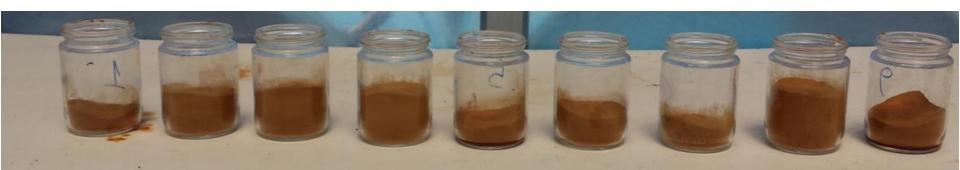
Mixed - chemoautotrophic /heterotrophic

(fertilization according to the nominal ammonia reading)

Heterotrophic

(fertilization according to the estimated ammonia produced)

C/N ratio = 15/1


MIXED:

Organic fertilization was done every time total ammonia nitrogen (TAN) exceed 1.0 mg/L

HETEROTROPHIC:

Estimated Nitrogen production = Feed*% protein*0.144 (Ebeling, 2006)

QUANTITY OF MOLASSES (g) = [TAN]/0.3469*C/N RATIO*VOLUME*1.02/1000

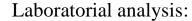
Water use: Clarify or water exchange

20% of water renewal, in case:

TAN reached 7 mg/L

Nitrite reached 20 mg/L

SST > 500 mg/L


(Gaona, 2011)

Twice the safe level of each one* (approximate levels by Lin & Chen, 2001; 2003)

Water parameters

- Temperature
- pH
- Dissolved Oxygen

Daily

- Total Ammonia Nitrogen (UNESCO, 1983)
- Nitrite (Bendschnider & Robinson, 1952)

Daily

- Alkalinity (APHA, 1998)
- Total suspended solids (AOAC, 2000)

Twice a week

- **Nitrate** (Aminot & Chaussepied, 1983)
- Turbidity (turbidimeter)

Weekly

Feeding frequency: 2 times per day (08:00 a.m. and 5:00 p.m.);

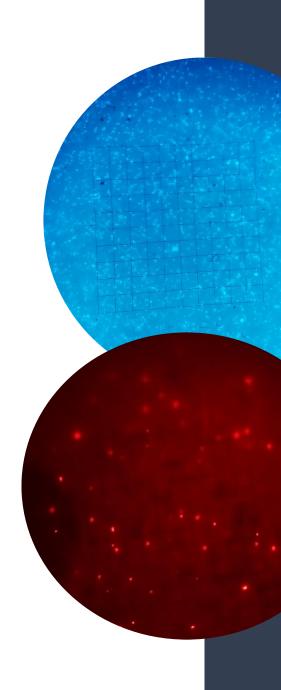
✓ Feeding trays with 10% of feed;

✓ Feeding rate according consumption;

✓ Monitoring: every 24 h.

Shrimp monitoring – every 7 days – 20 shrimps / tank were sampled and individually weighed

- -Weekly growth rate (WGR)
 - WGR = (final weight / number of weeks of culture)
- -Survival (S%)
 - S% = [(final biomass / average individual weight) / number of individuals stocked)] x 100
- –Productivity
 - Prod = (biomass increment / tank volume)
- -Feed conversion ratio (FCR)
 - FCR = offered feed / biomass increment



BFT water samples were collected and fixed in 2% paraformaldehyde (PFA) to detect the growth of the population of nitrifying and heterotrophic bacteria by Fluorescent *IN SITU* Hybridization (FISH) methodology, at Federal University of Juiz de Fora – MG - Brazil

- ✓ Culture—independent molecular biology technique
- ✓ Allows a direct and precise quantification of the pathogenic and probiotic bacteria cells at species or genus level

- ✓ Oligonucleotide probes rRNA-targeted will be used to identify the groups of bacteria.
- ✓ All probes will be labeled with the Cy3 fluorochrome.
- ✓ The abundance of bacteria will be determined by direct counting at 1000× magnification using an epifluorescence microscope (Olympus® BX-60)
- ✓ A negative control made with a probe without any specificity for bacteria will be used to evaluate the efficiency of hybridization.

Statistical analysis

- Homoscedasticity of variances and normality tests;
- One-way ANOVA Detect possible differences between treatments and posteriori Tukey's test ($\alpha = 0.05$).

Results

Table 1 – Water quality parameters (mean \pm standard deviation) in different BFT systems. Means in the same line with different letters are significantly different (p <0,05).

	Heterotrophic	Mixed	No fertilization
Temperature (°C)	27,75±1,45	28,15±1,17	28,73±1,65
Dissolved Oxygen (mg/L)	6,15±0,55	6,18±0,25	6,21±0,34
рН	7,96±0,14 a	7,65±0,20 ^b	7,64±0,18 ^b
Total ammonia nitrogen			
(mg/L)	1,10±1,09 a	1,53±1,12 a	$4,88\pm2,11^{\ b}$
NO_2 -N (mg/L)	2,38±3,22 a	6,46±8,08 b	9,44±9,27 b
NO_3 -N (mg/L)	20,13±3,56 a	87,77±3,22 ^b	79,21±2,88 ^b
Allralinity (CaCO ma/L)	321±22 b	125 i 11 a	1 <i>1 1 1</i> 1 7 a
Alkalinity (CaCO ₃ mg/L)	321±22°	135±11 ^a	144±17 ^a
TSS (mg/L)	355±102 ^b	199±85 a	119±66a

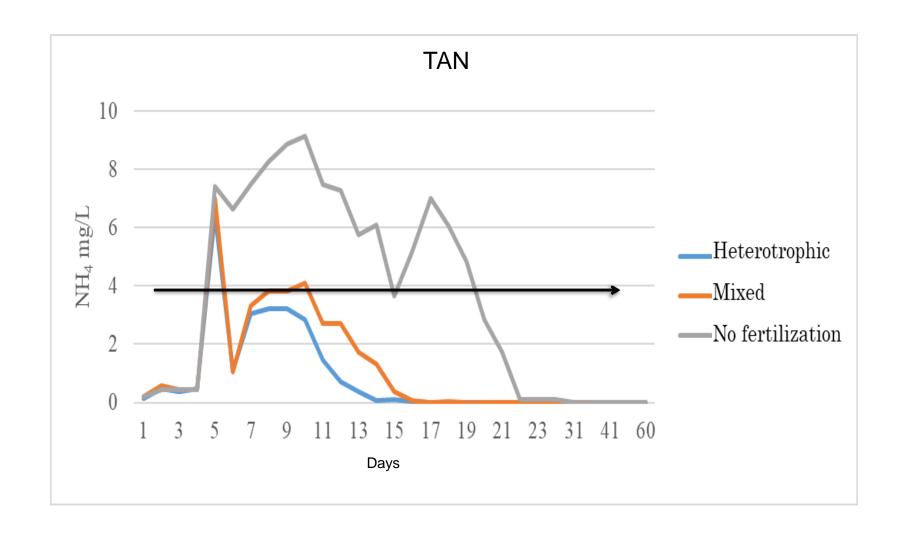
Physical and chemical parameters were withing the range recommend for *L. vannamei* (Jiang and Pan, 2005; Ponce-palafox et al., 1997).

Table 1 – Water quality parameters (mean \pm standard deviation) in different BFT systems. Means in the same line with different letters are significantly different (p <0,05).

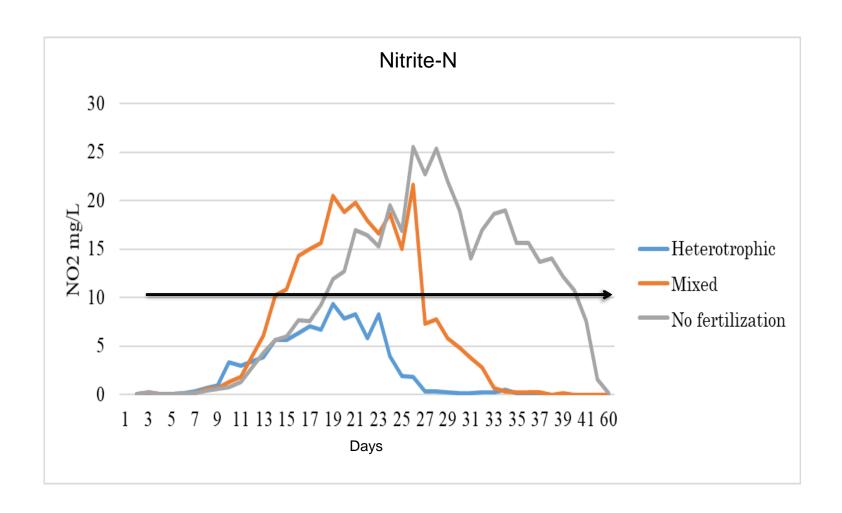
	Heterotrophic	Mixed	No fertilization
Temperature (°C)	27,75±1,45	28,15±1,17	28,73±1,65
Dissolved Oxygen (mg/L)	6,15±0,55	6,18±0,25	6,21±0,34
pH	7,96±0,14 a	7,65±0,20 b	7,64±0,18 ^b
Total ammonia nitrogen			
(mg/L)	1,10±1,09 a	1,53±1,12 a	4,88±2,11 b
NO_2 - $N (mg/L)$	2,38±3,22 a	6,46±8,08 ^b	9,44±9,27 b
NO_3 -N (mg/L)	20,13±3,56 a	87,77±3,22 ^b	79,21±2,88 b
Alkalinity (CaCO ₃ mg/L)	321±22 b	135±11 ^a	144±17ª
TSS (mg/L)	355±102 ^b	199±85 ^a	119±66ª

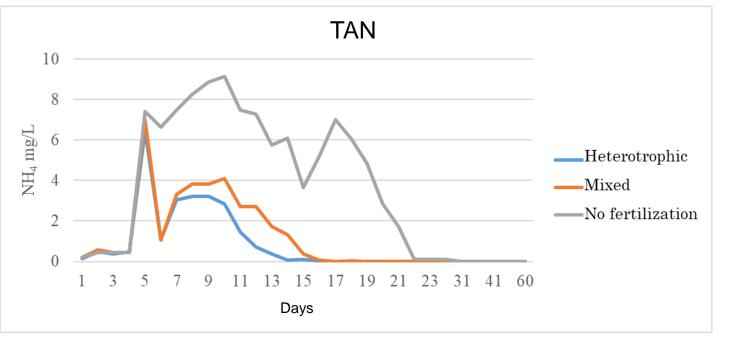
Physical and chemical parameters were withing the range recommend for *L. vannamei* (Jiang and Pan, 2005; Ponce-palafox et al., 1997).

Table 1 – Water quality parameters (mean \pm standard deviation) in different BFT systems. Means in the same line with different letters are significantly different (p <0,05).


	Heterotrophic	Mixed	No fertilization
Temperature (°C)	27,75±1,45	28,15±1,17	28,73±1,65
Dissolved Oxygen (mg/L)	6,15±0,55	6,18±0,25	6,21±0,34
pН	7,96±0,14 a	7,65±0,20 b	7,64±0,18 b
Total ammonia nitrogen			
(mg/L)	1,10±1,09 a	1,53±1,12 a	4,88±2,11 b
NO_2 - $N (mg/L)$	2,38±3,22 a	6,46±8,08 b	9,44±9,27 b
NO_3 - $N (mg/L)$	20,13±3,56°a	87,77±3,22 ^b	79,21±2,88 b
Alkalinity (CaCO ₃ mg/L)	321±22 b	135±11 ^a	144±17ª
TSS (mg/L)	355±102 ^b	199±85 a	119±66ª

Physical and chemical parameters were withing the range recommend for *L. vannamei* (Jiang and Pan, 2005; Ponce-palafox et al., 1997).

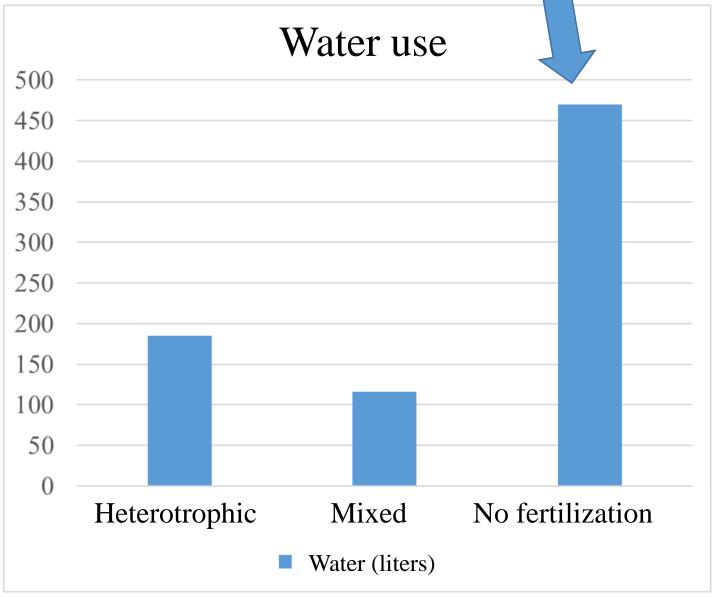

Table 1 – Water quality parameters (mean \pm standard deviation) in different BFT systems. Means in the same line with different letters are significantly different (p <0,05).

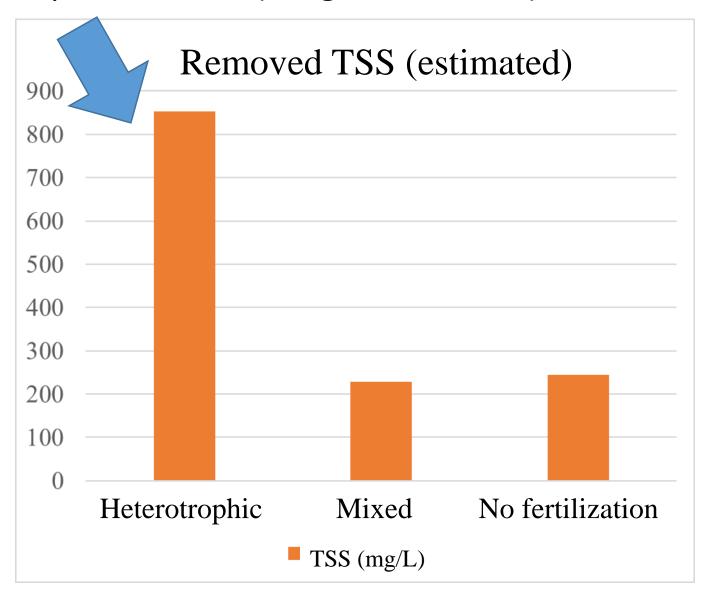

	Heterotrophic	Mixed	No fertilization
Temperature (°C)	27,75±1,45	28,15±1,17	28,73±1,65
Dissolved Oxygen (mg/L)	6,15±0,55	6,18±0,25	6,21±0,34
pH	7,96±0,14 a	7,65±0,20 b	$7,64\pm0,18$ b
Total ammonia nitrogen			
(mg/L)	1,10±1,09 a	1,53±1,12 a	4,88±2,11 b
NO_2 -N (mg/L)	2,38±3,22 a	6,46±8,08 ^b	9,44±9,27 b
NO_3 -N (mg/L)	20,13±3,56 a	87,77±3,22 ^b	79,21±2,88 b
Alkalinity (CaCO ₃ mg/L)	321±22 b	135±11 ^a	144±17ª
TSS (mg/L)	355±102 ^b	199±85 a	119±66ª

Physical and chemical parameters were withing the range recommend for *L. vannamei* (Jiang and Pan, 2005; Ponce-palafox et al., 1997).



No fertilization treatment overcame safe concentrations




Nitrification supression in heterotrophic treatment.

Water exchange due to TSS, ammonia and nitrite concentrations

Heterotrophic bacteria (Hargreaves, 2006)

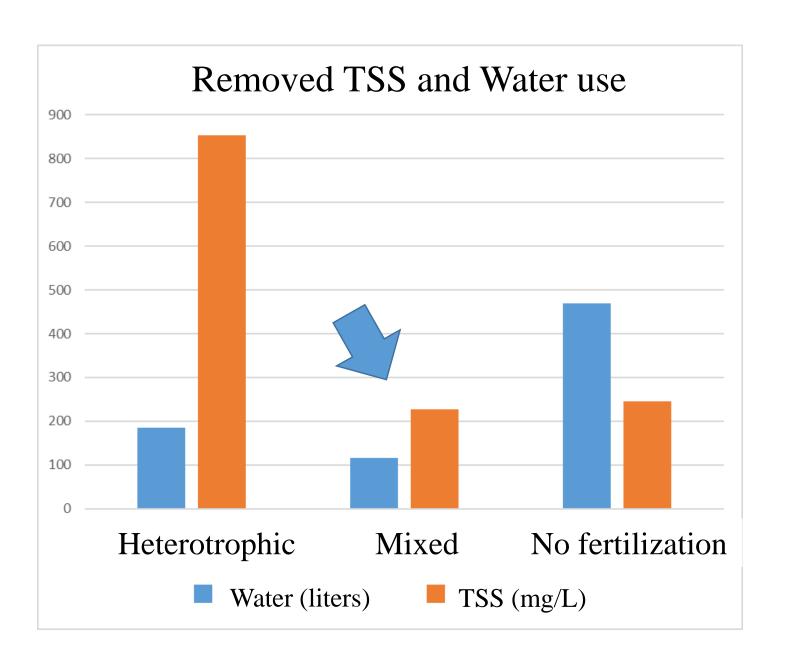


Tabela 2 - Zootechnical performance indexes (mean \pm standard deviation) of *L. vannamei* juveniles grown in tanks with different BFT systems. Means in the same line with different letters are significantly different (p <0.05).

	Heterotrophic	Mixed	No fertilization
Initial weitght (g)	7.0±1.37	7.0±1.37	7.0±1.37
Final weight (g)	12.6±0.28 ^b	13.8±0.68ª	13.3±0.06 ^{ab}
Survival (%)	87.4±5.13	93.3±3.85	94.07±3.39
Final biomass (g)	493.64±34.97	578.03±47.04	563.58±18.72
Biomass gain (g)	178.64±34.97 ^b	263.03±47.04ª	248.58±18.71ª
Weekly growth (g/sem)	0.69 ± 0.03^{b}	0.84 ± 0.08^{a}	$0.79 \pm 0.00^{\mathrm{ab}}$
Final yield (kg.m- ³)	3.29±0.23 ^b	3.85±0.31ª	3.76±0.12a
FCR	2.24±0.41 ^b	1.52±0.27ª	1.58±0.11 ^a

	Heterotrophic	Mixed	No fertilization
Initial weitght (g)	7.0±1.37	7.0±1.37	7.0±1.37
Final weight (g)	12.6±0.28 ^b	13.8±0.68 ^a	13.3±0.06 ^{ab}
Survival (%)	87.4±5.13	93.3±3.85	94.07±3.39
Final biomass (g)	493.64±34.97	578.03±47.04	563.58±18.72
Biomass gain (g)	178.64±34.97 ^b	263.03±47.04ª	248.58±18.71ª
Weekly growth (g/week)	0.69 ± 0.03^{b}	0.84±0.08ª	$0.79 \pm 0.00^{\mathrm{ab}}$
Final yield (kg.m- ³)	3.29±0.23 ^b	3.85±0.31ª	3.76±0.12a
FCR	2.24±0.41 ^b	1.52±0.27a	1.58±0.11 ^a

Similar zootechnical results, however in no fertilization treatment the water consumption was 450% higher, waste water higher, and solids production higher.

Conclusions Advantages Heterotrophic system Mixed system Advantages C/N ratio = 15/1

The results showed the importance of adopting a mixed biofloc system to optimize the use of water and decrease the production of solids.

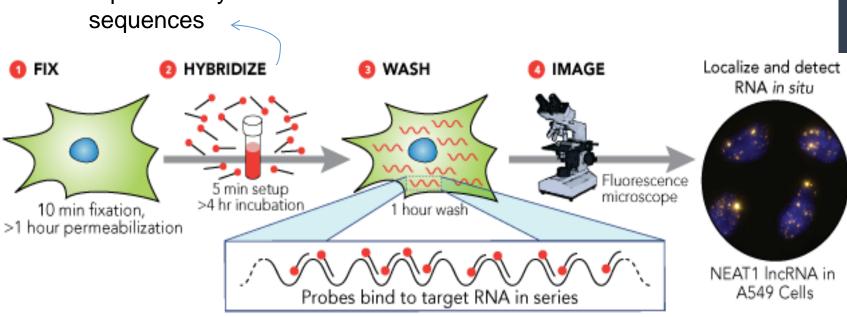
Special thanks to

Ph.D. Dioneia César

Laboratory of Ecology and Molecular Biology of Microorganisms - LEBIOMM

ACKNOWLEDGEMENTS

Ministério da



FISH – the tool

Probes that bind to the bacteria rRNA complementary sequences

Probe	Sequence of probe (5' - 3')	Place of destination (rRNA) and position	Specificity	*%F A	**NaCl (mM)	Reference
NON	TAGTGACGCCGTCGA	-	Negative Control	30	112	Yokokawa & Nagata (2005)
NIT3	CCTGTGCTCCATGCTCCG	16S (1030–1047)	Nitrobacter spp. – NOB	40	56	Wagner et al. (1996)
NITCOC 206	CGGTGCGAGCTTGCAAGC	-	Nitrococcus mobilis – AOB	20	225	Juretschko et al. (2000)
NSO 190	CGATCCCCTGCTTTTCTCC	16S (190–208)	Nitrosomonadales – AOB	35	80	Mobarry et al. (1996)
NSO 1225	CGCCATTGTATTACGTGTG A	16S (1224–1243)	Nitrosomonadales – AOB	35	80	Mobarry et al. (1996)
NSMR 76	CCC CCC TCT TCT GGA TAC	16S (132–149)	Nitrosomonas marina-like – AOB	20	225	Burrell et al. (2001)
NTSPA 685	CAC CGG GAA TTC CGC GCT CCT C	16S (664–685)	Nitrospira moscoviensis, Nitrospira marina – NOB	20	225	Burrell et al. (2001)
NTSPA 712	CGCCTTCGCCACCCGGCC TTCC	-	Phylum Nitrospira – NOB	50	28	Daims et al. (2001)
PAE 997	TCTGGAAAGTTCTCAGCA	16S (997-1014)	Pseudomonas spp. – Heterotrophic	35	80	Amann et al. (1996)

^{*} Percentage of formamide (FA) in the hybridization solution. ** Concentration of sodium chloride in the wash solution.